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Abstract

Large language models (LLMs) have shown remark-
able text understanding capabilities, which have been ex-
tended as Video LLMs to handle video data for compre-
hending visual details. However, existing Video LLMs
can only provide a coarse description of the entire video,
failing to capture the precise start and end time bound-
ary of specific events. In this paper, we solve this is-
sue via proposing VTimeLLM, a novel Video LLM de-
signed for fine-grained video moment understanding and
reasoning with respect to time boundary. Specifically, our
VTimeLLM adopts a boundary-aware three-stage training
strategy, which respectively utilizes image-text pairs for fea-
ture alignment, multiple-event videos to increase temporal-
boundary awareness, and high-quality video-instruction
tuning to further improve temporal understanding ability as
well as align with human intents. Extensive experiments
demonstrate that in fine-grained time-related comprehen-
sion tasks for videos such as Temporal Video Grounding
and Dense Video Captioning, VTimeLLM significantly out-
performs existing Video LLMs. Besides, benefits from the
fine-grained temporal understanding of the videos further
enable VTimeLLM to beat existing Video LLMs in video di-
alogue benchmark, showing its superior cross-modal un-
derstanding and reasoning abilities. 1

1. Introduction
Large language models (LLMs) have garnered significant
attention due to their exceptional capabilities in text un-
derstanding and generation [23, 31]. However, harness-
ing the potential of LLMs for understanding and reason-
ing over multimodal data, especially videos, still remains
a substantial challenge. This is because analyzing videos
requires deep understanding of both visual details and
temporal dynamics for models. Several preliminary at-
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VTimeLLM

(VideoLLaMA) The event happens at the 15-second mark.

(VideoChat) The man closes the laptop from 13.0 second to 13.6 second.

During which time period in the video does the event 'person 
close the laptop' happen?

0s      1s            3s           5s            7s           9s           11s          13s         15s      16s
Ground Truth: From 0s to 4s.

(VTimeLLM, ours) The person closes the laptop from 00 to 30. (0s ~ 4.8s) ✔

❌

❌

Figure 1. Existing Video LLMs, such as VideoChat and Vide-
oLLaMA, exhibit a deficiency in boundary awareness, leading to
challenges in accurately capturing the precise timestamps of spe-
cific events.

tempts [15, 20, 34] utilize LLMs for video understanding.
Nevertheless, these works predominantly focus on genera-
tion of generic video captions and can merely offer surface-
level summaries of the content, thus failing to capture the
relationships between specific moment boundaries and the
bounded events, as shown in Figure 1.

To tackle the problem, in this paper, we investigate im-
proving the boundary-aware ability of Video LLM, which
faces the following two challenges.
1. There is a scarcity of large-scale video datasets with ac-

curate boundary annotations to train the Video LLM for
temporal alignment.

2. It is non-trivial to design effective temporal-related video
tasks for training LLM to understand the content of mul-
tiple moments within videos.
To address these challenges, we propose VTimeLLM,

a novel Video LLM that can perceive fine-grained seg-
ments in videos with better temporal reasoning ability.
VTimeLLM consists of i) a visual encoder and a visual
adapter to process the input video, and ii) a tailored LLM
to understand both text and video content, which is trained
via a novel boundary-aware three-stage training strategy.
Specifically, visual features are aligned with LLM’s se-
mantic space through image-text training in the first stage.

https://github.com/huangb23/VTimeLLM
https://github.com/huangb23/VTimeLLM


In the second stage, we then design the single-turn and
multi-turn related question answering (QA) tasks to en-
due VTimeLLM with the awareness of time boundaries and
the ability to understand the corresponding events bounded
within the boundaries. We employ a large-scale video-text
dataset containing multiple segments together with their
roughly annotated labels for training VTimeLLM with the
QA tasks. Finally, in the third stage, we further cre-
ate a high-quality dialogue dataset for instruction tuning,
which simultaneously aligns VTimeLLM with human in-
tention and enables VTimeLLM to conduct temporal under-
standing for video segments more precisely. Extensive ex-
periments show that VTimeLLM significantly outperforms
existing Video LLMs in time-related video understanding
tasks, such as Temporal Video Grounding and Dense Video
Captioning. In addition, benefiting from the fine-grained
temporal understanding of videos, VTimeLLM is able to
beat existing Video LLMs in video dialogue benchmark,
demonstrating its superiority in cross-modal understanding
and reasoning for videos. Our contributions in this paper
are listed as follows,

• We propose VTimeLLM, the first boundary-aware Video
LLM, to the best of our knowledge.

• We propose the boundary-aware three-stage training strat-
egy, which consecutively leverages i) large-scale image-
text data for feature alignment, ii) large-scale multi-event
video-text data together with the temporal-related single-
turn and multi-turn QA to enhance the awareness of time
boundary, and iii) instruction tuning on the high-quality
dialog dataset for better temporal reasoning ability.

• We conduct extensive experiments to demonstrate that
the proposed VTimeLLM significantly outperforms exist-
ing Video LLMs in various fine-grained temporal-related
video tasks, showing its superior ability for video under-
standing and reasoning.

2. Related Works

2.1. Multimodal Large Language Model

Image LLMs To enable Large Language Models (LLMs)
to comprehend visual information, significant efforts have
been made to align visual and linguistic modalities. BLIP-
2 [14] introduced the concept of Q-Former, utilizing learn-
able query vectors to extract visual features from frozen
image encoders. MiniGPT-4 [37] demonstrated that fur-
ther fine-tuning with detailed image descriptions signifi-
cantly enhances its usability. LLAVA [16] explored diverse
multi-modal instruction-following data, aiming to construct
a general-purpose visual assistant. Recent endeavors, such
as Kosmos-2 [21] and VisionLLM [26], delved into more
detailed aspects of image comprehension, including refer-
ring and grounding, significantly enhancing the capability
to describe intricate image details.

Video LLMs Driven by the success of Image LLM, re-
searchers have naturally extended their focus from single-
frame images to multi-frame videos, leading to the emer-
gence of Video-compatible LLMs like VideoChat [15],
Video-LLaMA [34], and Video-ChatGPT [20]. These mod-
els employ a two-stage training strategy. In the first stage,
large-scale datasets align video features with the feature
space of LLMs. In the second stage, a limited amount of
GPT-annotated or human-annotated datasets are used for
instruction tuning. While these models exhibit impressive
overall video comprehension, their abilities to describe spe-
cific video segments and perform temporal reasoning re-
main limited. The limitation arises mainly due to the na-
ture of datasets used in the first training stage, such as Web-
Vid [2], which usually consist of one-event videos and noisy
textual annotations. Moreover, the scarcity of high-quality,
temporally annotated data in the second stage poses a chal-
lenge for models to conduct temporal reasoning. To bridge
this gap, our approach, VTimeLLM, introduces a bound-
ary perception stage between these two stages. This stage
enables the model to precisely locate events within videos
and describe multiple distinct events accurately, empower-
ing our model to grasp fine-grained details of video mo-
ments.

2.2. Fine-Grained Video Understanding

Fine-grained video understanding, the ability to precisely
locate and comprehend specific events within a video, is
a crucial challenge for video analysis. When integrated
with natural language, there are two primary tasks: Tem-
poral Video Grounding [1, 8] and Dense Video Caption-
ing [12, 25].

Temporal Video Grounding Temporal Video Grounding
aims to identify corresponding video segments for given
textual inputs. Traditional approaches can be categorized
into two types: proposal-based [4, 29, 32] and proposal-
free methods [9, 30, 33]. Proposal-based techniques gener-
ate candidate proposals before ranking them based on rel-
evance. In contrast, proposal-free methods directly predict
the start and end boundaries of the target moment.

Dense Video Captioning Dense Video Captioning is a
more intricate task, demanding both temporal localization
and captioning for all events within an untrimmed video.
Earlier methods [6, 11, 12] employed a two-stage process
involving temporal localization followed by event caption-
ing. Recent developments [25, 28, 36] in this field have
witnessed a shift towards joint training of captioning and
localization modules. For instance, Vid2Seq [28], enhances
a language model by incorporating specific time tokens, en-
abling the model to generate event boundaries and textual
descriptions within the unified output sequence.



Both these two tasks share a fundamental requirement:
the alignment of video segments with semantic context.
Leveraging the power of LLM with the help of our train-
ing strategy, our VTimeLLM model unifies these tasks and
has demonstrated remarkable effectiveness. Concurrently,
VTimeLLM enables natural language interaction with hu-
mans, establishing itself as an excellent assistant for com-
prehending video content.

3. VTimeLLM: Being Aware of Time Bound-
aries in Videos

In this section, we introduce VTimeLLM, which is designed
to grasp precise video moments for LLMs. We first provide
a detailed description of the model architecture, and then
our innovative boundary-aware three-stage training frame-
work, as shown in Figure 2.

3.1. Architecture

To enable the LLM to comprehend videos, our VTimeLLM
model incorporates two additional modules within LLM,
i.e., the visual encoder and the visual adapter, which trans-
form the visual information into text space.

Visual Encoder Our VTimeLLM model utilizes a frozen
CLIP ViT-L/14 [22] as the visual encoder, and for simplic-
ity we denote it as ViT. Given a video V ∈ RT×H×W×C

with T frames, we uniformly sample N = 100 frames,
represented as Ṽ ∈ RN×H×W×C , where Ṽ1 = V1 and
ṼN = VT . Each frame Ṽi is independently processed
through the visual encoder:

{vclsi , v1i , v
2
i , ..., v

p
i } = ViT(Ṽi), i = 1, 2, ..., N, (1)

where p represents the number of patches in the ViT.

Visual Adapter We utilize the global feature vclsi as the
feature for the i-th frame, and apply a linear layer f(·) to
project the features of each frame into the same embedding
space as that of LLM:

zi = f(vclsi ), i = 1, 2, ..., N. (2)

Subsequently, Z = {zi} ∈ RN×d becomes the input se-
quence that LLM can comprehend, and d is the hidden di-
mension of LLM.

Note that in the visual modules, we do not model the
temporal relationships for the frames, inspired by the fact
that the LLM itself can receive sequential input embeddings
and capture their temporal relations.

Input of LLM To enable the simultaneous processing
of video and text inputs, we introduce a special token,
‘<video>’, to represent the video content. More intuitively,

if we want to ask the LLM questions about the video, we can
use a mixed description, e.g., “This is a video <video>can
you describe this video ?”. With this mixed description, the
embedding layer will transform the textual words except for
<video> into embedding as the LLM originally does, and
we will obtain a textual embedding list [w1, w2, · · · , wM ]
for the text description, where wi ∈ Rd is the embedding
for each word and M is the word number. Then, the video
feature sequence will be inserted into the embedding list, at
the position of <video> as follows,

input = [w1, · · · , wj−1, Z, wj , · · · , wM ], (3)

where j − 1 and j are the indexes of the words that are
close to the special token <video>in the original sentence.
(In the previous example, wj−1 corresponds to the word
“video”, wj corresponds to the word “can”). Then LLM
can further encode the input embedding list input to under-
stand the video and the user query.

Output for Temporal Boundaries We employ the text
format ‘from s to e’ to denote a video moment, where s
and e represent the starting and ending frame indexes of the
moment, ranging from 00 to 99, with each number corre-
sponding to a specific frame.

3.2. Boundary-aware Training

In contrast to the previous typical two-stage training ap-
proaches [15, 20, 34], consisting of alignment and instruc-
tion tuning, our approach introduces an additional stage to
improve the temporal understanding ability of the model.
Specifically, the first stage, feature alignment, aims to train
the visual adapter, to align video features with LLM’s se-
mantic space. The second stage, boundary perception, fo-
cuses on enabling LLM to develop attentional capabilities
for specific moments, facilitating the understanding of var-
ious events occurring within the video. The third stage, in-
struction tuning, allows LLM to align with human intent
and enabling more precise event localization and descrip-
tion. In the following sections, we will elaborate on the
training methods and datasets utilized for each of these three
stages.

3.2.1 Stage 1: Feature Alignment

Data Organization In the feature alignment stage, we
employ the image-text LCS-558K dataset as curated by
LLaVA [16]. This dataset is meticulously filtered to achieve
a more balanced distribution of conceptual coverage. Com-
prising image-text pairs, we deliberately choose not to in-
corporate datasets containing video-text pairs with the fol-
lowing two considerations. Firstly, contemporary large-
scale video-text datasets contain substantial textual noise,
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Figure 2. Our boundary-aware three-stage training framework. In the first stage, visual features are aligned with LLM’s semantic space
through image-text training. In the second stage, we transform a large-scale multi-event dataset into a QA format based on templates,
training VTimeLLM to possess temporal boundary awareness and understand events within the boundaries. In the third stage, we create
a high-quality dialogue dataset for instruction tuning, which aligns VTimeLLM with human intent and also enables more precise video
temporal understanding.

which severely impedes the alignment between visual fea-
tures and textual semantics. Secondly, the transformation
from visual information to text space usually suffers from
information loss, e.g. when captioning an image or a video
into “a dog is running on the grass”, we may lose infor-
mation about the visual details (such as the color) of the
dog. Comparatively, the loss of information resulting from
summarizing an image into a few words is less than that of
videos. Our experiments also demonstrate the superiority
of using image datasets for alignment over video dataset (a
filtered subset [19] of WebVid2M [2]), and even a combi-
nation of both.

Training Strategy For each image-text pair <I , T> in
the dataset, a special token <image>is directly appended
before the text T , the embedding of this token is extracted
with the visual encoder and the visual adapter as follows,
denoted as ZI :

ZI = f(ViT(I)cls), (4)

and we can obtain the embedding sequence:

input = [ZI , w1, w2, · · · , wM ]. (5)

Then, we can use it to train the visual adapter f , with the
original auto-regressive training objective of the LLM.

3.2.2 Stage 2: Boundary Perception

After the training in the first stage, the LLM model becomes
proficient in understanding visual information. In the sec-
ond stage, we enhance the model’s capabilities to compre-
hend sequential image frames, i.e., video, encompassing the
semantic understanding of video segments while ensuring
alignment with the corresponding boundaries.

Data Organization Due to the time-consuming nature of
manually annotating timestamps and semantics for video
segments, there is currently a lack of large-scale multi-event
video-text datasets. Traditional methods align video seg-
ments with text transcripts generated by Automatic Speech
Recognition (ASR). However, this approach faces chal-
lenges due to the lack of synchronicity and consistency
between actions performed and spoken content, leading
to weak correlations and inaccuracies in boundary annota-
tions.

Recently, we identified the InternVid-10M-FLT [27]
dataset, which offers a viable solution for our boundary-
aware training. This dataset employs an entirely automated
process to segment and annotate video clips, eliminating
the need for manual intervention. Consequently, a single
video may contain multiple event annotations. To ensure
suitability for our study, we selected specific videos, each
not exceeding 120 seconds in length. These videos encom-



Box 1: Examples of both single-turn and multi-turn QA for a video containing three events.

Single-turn QA.
Q1: Could you please detail the events that took place during different time segments in the video?
A1: T1, from s1 to e1. T2, from s2 to e2. T3, from s3 to e3.
Multi-turn QA.
Q1: Can you describe what occurred from s2 to e2 in the video? A1: T2.
Q2: Tell me about the events from s3 to e3. A2: T3.
Q3: During which frames in the video can we observe T1 happening? A3: From s1 to e1.

Box 2: The inputs to VTimeLLM in Stage 2 and Stage 3

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and
polite answers to the user’s questions.
USER: This is a video with 100 frames: <video>\n Q1 ASSISTANT: A1</s>
USER: Q2 ASSISTANT: A2</s>......

pass multiple non-overlapping event annotations, each last-
ing more than 3 seconds, and the average duration of these
events exceeds 8% of the video length. Thus, we curate a
dataset comprising 134k videos, where each video contains
multiple events and their rough temporal annotations and
descriptions.

In each video, a series of events {si, ei, Ti} is contained,
where si and ei represent the start and end timestamps of
a segment, ranging from 00 to 99. Ti corresponds to its
textual description. To transform these events into dialogue
data {Q1, A1, Q2, A2, ...} suitable for training LLM, we de-
vise two types of QA dialogues: single-turn and multi-turn,
constituting 20% and 80% respectively. In Box 1, we have
provided examples of both single-turn and multi-turn QA
dialogues for a video containing three events. Specifically,
the task of single-turn QA is dense video captioning. Q1

prompts a question requiring a comprehensive description
of all events and their corresponding timestamps, while A1

outputs the respective textual descriptions and timestamps
in a specified format as shown in the upper box of Box 1.
On the other hand, multi-turn QA involves segment cap-
tioning and temporal video grounding tasks, demanding the
description generation given timestamps or timestamps gen-
eration given descriptions, as shown in the lower box of Box
1. In multi-turn QA, each event will be randomly queried
for one of these two tasks, and the questions are not neces-
sarily presented in the order of the events’ occurrence. We
design 10 templates for each task to transform events into
QA dialogues, which can be found in the appendix.

Training Strategy We format these QA pairs according
to the original LLM’s format, keeping the initial system
prompts intact. Moreover, we insert the statement “This is a
video with 100 frames: <video>\n” before the first ques-
tion. For illustration purposes, the input for VTimeLLM

is presented in Box 2. With the reformated sequences, we
continue to employ the auto-regressive training objective,
where the loss is computed exclusively on the tokens within
the answer of the QA dialogues(A1, A2, ...). To enhance
training efficiency, we utilize LoRA [10] for fine-tuning
the LLM. During this stage, we keep the visual adapter f
frozen. Consequently, the only trainable parameters are the
newly applied LoRA modules.

3.2.3 Stage 3: Instruction Tuning

Following the training in the second stage, our VTimeLLM
model demonstrates the ability to comprehend all events
within the video and align them with the corresponding
timestamps. Despite the diverse templates employed, the
model’s output still tends to overfit the answers, which be-
haves more like a multi-task pretrained model while losing
chatting ability with the user, e.g., when we input “What
color is the coat of the man” to the model, it may response
“from 00 to 10”. Additionally, the labels of the video-text
data in the second stage are originally annotated in an auto-
mated way, which are not so accurate and noisy. To tackle
the two problems, in the third stage, we incorporate high-
quality dialogue data for instruction tuning, enabling the
model to follow human instructions for more accurate video
temporal comprehension and reasoning.

Data Organization In this stage, we select a subset from
ActivityNet Captions [12] and DiDeMo [1] datasets, and
transform it into a high-quality QA dialogue dataset with
the assistance of Large Language Models. In contrast to
InternVid which employs automated segmenting and label-
ing, these two datasets are entirely manually annotated, re-
sulting in descriptions that are more detailed and tempo-
ral boundaries that are more accurate. Specifically, we
carefully selected a subset of videos from the training set



Table 1. The results of existing Video LLMs in temporal video grounding and dense video captioning tasks.

Model
Temporal Grounding Dense Captioning

ActivityNet Charades-STA ActivityNet
R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU SODA c CIDEr METEOR

VideoChat-7B [15] 8.8 3.7 1.5 7.2 9.0 3.3 1.3 6.5 0.9 2.2 0.9
VideoLLaMA-7B [34] 6.9 2.1 0.8 6.5 10.4 3.8 0.9 7.1 1.9 5.8 1.9
VideoChatGPT-7B [20] 26.4 13.6 6.1 18.9 20.0 7.7 1.7 13.7 1.9 5.8 2.1

VTimeLLM-7B 44.0 27.8 14.3 30.4 51.0 27.5 11.4 31.2 5.8 27.6 6.8
VTimeLLM-13B 44.8 29.5 14.2 31.4 55.3 34.3 14.7 34.6 5.9 27.2 6.7

of ActivityNet Captions. These videos contained a mini-
mum of three non-overlapping events, collectively cover-
ing over 90% of the video duration, amounting to approx-
imately 4.2k videos. Similarly, a subset of videos is being
selected for the DiDeMo dataset, each containing at least
two non-overlapping events and covering 40% of the video
duration. This process results in a total of about 4k videos
for the DiDeMo subset. Subsequently, we also transform
these videos, which contain a series of events {si, ei, Ti},
into QA dialogues. However, results from the second stage
of training indicate that template-based conversations lead
to model overfitting. Therefore, we utilize LLM for this
transformation. Specifically, we provide these events to the
LLM, prompting it to assume the role of an AI visual as-
sistant capable of analyzing the video and generate a dia-
logue about the video between itself and a user. The prompt
can be found in the appendix. This approach results in QA
dialogues that are grammatically correct, linguistically co-
herent, and may encompass a variety of tasks. We gener-
ate two distinct sets of dialogues for each video, yielding
a final dataset comprising around 16k high-quality QA di-
alogues. Additionally, we observe that introducing a com-
parable number of other video instruction tuning datasets
further enhances the descriptive capabilities of the model,
with minimal impact on temporal understanding abilities.
Therefore, we add an extra 20k QA pairs from the VideoIn-
struct100K [20] dataset. Overall, in this stage, a total of ap-
proximately 36k QA dialogues are used for training, which
is significantly smaller than the dataset used in the second
stage.

Training Strategy We merge the LoRA module trained
in the second stage with the original model and introduce
a new LoRA module, which serves as the only trainable
parameters. All other training details remain consistent with
those of the second stage.

4. Experiment
4.1. Experiment Setup

Tasks, Dataset, and Evaluation Metrics To assess the
capability of VTimeLLM in comprehending various event

segments, we mainly conduct evaluations on two tasks:
Temporal Video Grounding and Dense Video Caption.

For the Temporal Video Grounding task, we utilize
datasets from ActivityNet Captions [1] and Charades-
STA [8]. We calculate the Intersection over Union (IoU)
between the time segments generated by the model and the
corresponding ground truth time segments. We report mean
IoU (mIoU) and recall@1, IoU≥ m (R@m) metric, where
m values are set at {0.3, 0.5, 0.7}.

In the case of Dense Video Captioning, we employ the
ActivityNet Captions [1] dataset. The evaluation process
encompasses two categories of metrics. Firstly, we em-
ploy SODA c [7], a metric specifically tailored for dense
video caption tasks, taking into account the video’s sto-
ryline. Secondly, we compute matched pairs between the
generated events and the ground truth across IoU thresh-
olds of {0.3, 0.5, 0.7, 0.9}, and calculate captioning metrics
based on these matched pairs [28]. We report CIDEr [24]
and METEOR [3] averages under different IoU thresholds
to provide a comprehensive analysis.

Implementation Details In our study, we use Vicuna
v1.5 [5] as the Large Language Model and train two ver-
sions: 7B and 13B. We use a total batch size of 128 through-
out the training process. The AdamW [18] optimizer is ap-
plied with a cosine learning rate decay and a warm-up pe-
riod. In the first training stage, the total epoch number is 1
with a learning rate of 1 × 10−3, and the subsequent sec-
ond and third stages we will train for 2 epochs each with
a learning rate of 1 × 10−4. The LoRA parameters are set
to r = 64 and alpha = 128. Thanks to the efficiency of
LoRA, we can complete the training of the 7B model within
30 hours with 1 RTX-4090 GPU.

4.2. Main Results

We evaluate the capabilities of existing Video LLMs in tem-
poral video grounding and dense video captioning tasks, as
shown in Table 1. Detailed information about the evalua-
tion process can be found in the appendix. VTimeLLM-7B
outperforms these Video LLMs of the same size by a sig-
nificant margin. Upon further scaling up the model to 13B
parameters, we observe minor changes in performance on



Table 2. Ablation study of the three-stage training strategy. In Stage 1, “I” and “V” represent the utilization of image or video datasets,
and “I+V” signifies the merging of both datasets. In Stage 2, we compare options for Freezing or Tuning the visual adapter. In Stage 3,
“Reuse” indicates the reuse of the LoRA from Stage 2, while “Addition” signifies the addition of a new LoRA module. “✗” represents
the absence of training in this stage.

Row Stage1 Stage2 Stage3
Temporal Grounding Dense Captioning

ActivityNet Charades-STA ActivityNet
R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU SODA c CIDEr METEOR

1
I

Freeze
✗

36.1 21.4 10.5 25.5 48.4 23.7 11.5 32.2 4.6 17.0 5.4
2 Tune 35.6 21.4 10.2 24.8 48.0 24.4 12.1 31.6 4.6 17.0 5.5
3

V
Freeze

✗
33.5 17.9 8.1 23.9 46.6 17.7 6.7 30.5 4.0 14.1 5.0

4 Tune 34.8 18.2 8.5 24.4 47.9 19.9 8.0 31.4 4.2 14.1 5.2
5

I+V
Freeze

✗
31.3 16.5 6.8 22.2 47.5 21.9 9.2 30.6 4.1 13.4 5.0

6 Tune 33.5 17.4 6.9 23.2 47.1 21.4 8.6 30.6 4.0 13.6 4.8
7 ✗ Tune ✗ 42.2 22.7 11.5 29.8 40.0 4.9 0.0 27.5 3.7 10.2 5.0
8 I ✗ Addition 31.0 18.1 7.7 22.9 37.5 21.8 6.1 22.8 4.2 16.0 5.0
9 I Freeze Reuse 39.3 26.6 13.0 28.1 49.7 29.8 13.3 30.9 5.2 23.2 6.1

10 I Freeze Addition 44.0 27.8 14.3 30.4 51.0 27.5 11.4 31.2 5.8 27.6 6.8

ActivityNet tasks, while the temporal grounding ability im-
proves on Charades-STA. It is worth noting that our training
dataset does not include Charades-STA training data, indi-
cating that increasing the scale of our VTimeLLM model
enhances its out-of-distribution generalization ability.

We provide several possible explanations to account
for the poor performance of other models: firstly, both
VideoChat and VideoLLaMA extract only N=8 frames as
input, making it challenging for them to achieve a fine-
grained understanding of the video content. Secondly,
the commonly used LLM (Vicuna) lacks robust positional
awareness in input sequences. For instance, when posed
with the question “What is the position of the word ‘video’
in the phrase ‘a video clip’ ?”, it may erroneously respond,
“The word ‘video’ appears at position 67.” Relying solely
on a limited set of temporally annotated data for instruc-
tion tuning is insufficient to address this issue. Therefore, it
is essential to integrate boundary-aware training to achieve
precise video comprehension.

4.3. Ablation Study

In this section, we provide detailed ablations about our
three-stage training strategy through experiments on the 7B
model, as illustrated in Table 2. In the ablation, our most
concerned questions and their results are provided in the
following.

Q1: How to train a good visual adapter? In contrast to
other Video LLMs, we utilize a pure image modality for
the first stage and find it to be superior across all metrics
than using a pure video modality (Rows 1, 2 vs Rows 3,
4). This effectiveness of using images to alignment could
be attributed to the higher quality and reduced information
loss in image datasets. Additionally, using pure images out-
performs the fusion of two modal datasets (Rows 1, 2 vs

Rows 5, 6). This could be due to the significant disparity in
tasks, where describing a single frame event and describing
a sequence of 100 frames events pose distinct challenges for
model fitting.

Another question arises during the following stage:
should the previously pretrained visual adapter be tuned or
frozen? Upon comparing Row 1 vs Row 2, Row 3 vs Row
4, and Row 5 vs Row 6, we observed minor difference in
performance between the two approaches. To retain the
comprehensive information acquired during the pretraining
stage, we opt to freeze the parameters of the visual adapter
in the latter two stages.

Q2: Should the LoRA from stage 2 be reused in stage 3?
Upon comparing Row 9 to Row 10, it is evident that in stage
3, merging the LoRA module from the second stage with
the LLM parameters and additionally incorporating another
LoRA module yields superior results. This approach en-
sures that the temporal understanding capabilities acquired
during stage 2 are effectively preserved within the model.

Q3: Is every training stage necessary? By comparing
Rows 1˜6 with Row 7, we observe a substantial disparity
in the model’s performance on temporal grounding when
training without stage 1. The scores are abnormally high
on the ActivityNet dataset, while significantly low on the
Charades-STA dataset. Upon careful analysis of the outputs
under this setting, we find that the model has not effectively
learned to localize events. Instead, it tends to predict a tem-
poral segment spanning nearly the entire video (e.g., from
00 to 95). In such cases, if the ratio of ground truth duration
to video length is denoted as x, the IoU with the model’s
output is approximately x. The ActivityNet dataset contains
a significant number of long samples, with 20% of queries
having x > 0.5, leading to an inflated evaluation metric.



Table 3. The results of video dialogue on video-based generative performance benchmarking.

Evaluation Aspect VideoLLaMA LLaMA-Adapter VideoChat VideoChatGPT BT-Adapter VTimeLLM
Temporal Understanding 1.82 1.98 1.94 1.98 2.34 2.49
Correctness of Information 1.96 2.03 2.23 2.40 2.68 2.78
Detail Orientation 2.18 2.32 2.50 2.52 2.69 3.10
Contextual Understanding 2.16 2.30 2.53 2.62 3.27 3.40
Consistency 1.79 2.15 2.24 2.37 2.46 2.47
Mean 1.98 2.16 2.29 2.38 2.69 2.85

Conversely, in the Charades-STA dataset, x rarely exceeds
0.5, demanding more precise localization [13]. However,
the model without stage 1 training fails to achieve it. More-
over, the model’s performance in dense captioning tasks is
unsatisfactory, which also highlights the essential nature of
the feature alignment stage.

The necessity of stage 2 can be demonstrated by com-
paring Row 8 with Rows 9, 10. Despite the higher quality
of annotations in stage 3, the limited dataset size hinders
the model’s ability to achieve a robust temporal understand-
ing through stage 3 training alone. Models trained solely
in stage 3 exhibit inferior performance across various tasks
compared to those that have undergone preliminary training
in stage 2.

After stage 3 training, the model exhibits comprehensive
improvement in the tasks outlined in the table (Row 1 vs
Row 10). Furthermore, it regains chatting ability, enabling
it to respond to a wide range of questions posed by humans.

4.4. Video Dialogue Performance

Besides the ability for fine-grained video understanding
tasks, we explore whether VTimeLLM can address a
broader range of questions through dialogue. We employ
the Video-ChatGPT [20] benchmark and conduct an evalu-
ation of video-based generative performance. This bench-
mark covers many questions associated with five key as-
pects. GPT-3.5 assigns a score, not exceeding 5, to the
model-predicted answer based on the question and the cor-
rect answer. We present the average scores in Table 3 and
compare VTimeLLM with existing Video LLMs, including
VideoLLaMA [34], LLaMA-Adapter [35], VideoChat [15],
VideoChatGPT [20] and BT-Adapter [17].

Thanks to the fine-grained video comprehension capa-
bilities, VTimeLLM achieves state-of-the-art results in all
aspects. The most substantial improvement is observed in
the aspect of detail orientation, where VTimeLLM achieves
a noteworthy enhancement of +0.41 (15.2%). We attribute
this progress to two primary factors. Firstly, the image-
based training in stage 1 ensures comprehensive preser-
vation of visual details in individual frames, facilitating
a detailed understanding of spatial dimension. Secondly,
the temporal-aware training employed in the second and
third stages enables VTimeLLM to capture multiple events

within videos, enhancing its ability to depict details of tem-
poral dimension.

To better illustrate the video dialogue performance of
VTimeLLM, we present a qualitative example, as shown in
Figure 3.

This video showcases a man crawling through a hole in a wall, 
emerging into a dark room. He then continues crawling 

through a pipe that leads him to a well. The video concludes 
with the man standing in the rain, gazing up at the sky.

Describe the video.

The man crawl through the pipe from 51 to 68. 

When does he crawl through the pipe?

Which movie does this video belong to?

This video belongs to the movie "The Shawshank Redemption."

Figure 3. A qualitative example of video dialogue. The video is
160 seconds long.

5. Conclusion

In this work, we introduce VTimeLLM, a Video LLM ca-
pable of comprehending multiple events within a video and
providing precise temporal boundaries. Specifically, we
propose a three-stage temporal-aware training framework.
This framework utilizes large-scale image-text data for fea-
ture alignment, leverages extensive multi-event video-text
data along with temporal-related question-answering to en-
hance temporal awareness, and employs instruction tun-
ing on a high-quality dialogue dataset to improve tempo-
ral reasoning ability. Extensive experiments demonstrate
that VTimeLLM outperforms existing Video LLMs signifi-
cantly across various tasks.
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